Al-based Acoustic Defect Detection for Speaker Manufacturing

Yitong Lu
Stanford University
yitonglu@stanford.edu

Abstract

In this work, we develop a robust Al-based system to de-
tect speaker defects in an acoustic device manufacturing
pipeline. Our solution replaces manual auditory inspec-
tion with a spectrogram-based classification model, trained
and deployed in real factory settings. The project pro-
gresses from a simple CNN baseline trained on 300 manu-
ally labeled samples, to a self-supervised learning pipeline
utilizing over 8000 unlabeled samples. Through rigorous
data collection, selective audio augmentation, and fine-
tuning with conservative relabeling standards, we improved
classification accuracy from 94.27% to 96.43%, and elimi-
nated false positives. Our model integrates seamlessly into
SoundCheck, enabling microphone-based real-time classi-
fication on a laptop with latency under 1 second. This work
demonstrates the feasibility of deep learning—driven acous-
tic quality control, offering significant time savings and im-
proved reliability in factory workflows.

1. Introduction

Speaker defect detection is a critical task in acoustic de-
vice manufacturing. This project aims to develop a robust
Al-based system to replace manual inspections, reduce hu-
man fatigue, and improve consistency. The system pro-
cesses raw audio recordings and classifies them into normal
or abnormal categories using spectrogram-based features.

This project is a real-world application in collaboration
with an OEM manufacturing company. The AI system
will be integrated into the production line of a mid-range
speaker model. We estimate that it will reduce annual in-
spection costs by approximately $3.5k per production line
and decrease the inspection time per unit from 5 seconds to
just 1 second. In addition, it reduces training time, mini-
mizes inconsistency among inspectors, and mitigates errors
caused by fatigue and inexperience. These human-induced
errors—especially those stemming from fatigue or insuffi-
cient expertise—are significant, as we observed substantial
discrepancies between judgments made by factory workers
and those made by professional audio engineers.

4321

2. Related Work

After careful investigation, we found that there is cur-

rently no open-source model specifically designed for
speaker defect detection. This may be due to a prevailing
belief that traditional signal processing techniques are more
reliable than Al-based methods in this domain. In conver-
sations with professionals at companies such as AIZIP and
NexaAl—both of which specialize in audio Al—they con-
firmed that, as of now, no robust solutions exist for this task.
For large tech companies, this problem likely falls outside
their core priorities within the supply chain. Meanwhile,
startup companies often lack access to sufficient real-world
factory testing data to develop effective models. Given
this context, I believe my project represents a valuable and
meaningful exploration into an underdeveloped yet impact-
ful area.
Currently, our speaker testing process relies on a sweeping
frequency method, where an input signal is played from
low to high frequency, and the resulting sound is analyzed.
We have two primary approaches for evaluating speaker
quality:

e Manual auditory inspection: Evaluation is per-
formed by factory workers. The reliability of this
method depends heavily on the workers’ expertise and
factory management, as discussed earlier.

Automated quality control systems: Many facto-
ries utilize commercial QC systems from companies
such as Klippel and SoundCheck to detect speaker de-
fects. For example, the diagram on the right illustrates
SoundCheck’s detection algorithm. It assesses percep-
tual distortion by analyzing the harmonic structure of
the output signal and applying PEAQ (Perceptual Eval-
uation of Audio Quality) to produce a perceptual dis-
tortion curve (RB/PRB), which reflects human audi-
tory perception of anomalies.

However, these systems also face several limitations:
— Thresholds must be manually configured by en-

gineers; inaccurate settings can result in high
false positive rates.

Response Spectrum
Noise Reduction

Auditory Filter
Bands

Ear Weighting
Frequency
Spreading

Partial Loudness
Calculation

Refined Masking Filters

Harmonic Structure

Figure 2. worker check the speaker quality by manual inspections

— The system is sensitive to background noise and
may fail to detect subtle anomalies or distortions.

— The use of sweep-tone signals can be time-
consuming, impacting production efficiency.

For our project, although the main model was trained
independently, we utilized pretrained EfficientNetV2 and
ResNet-18 models for feature extraction during our experi-
ments.

3. Data

All of our data were collected directly from a real factory
production line. Each sample is a WAV audio file approxi-
mately one second in length. No data were sourced online.
The labeling follows a standard binary classification
scheme: OK (quality passed) and NG (not good). We also
have a third label, Not sure, which indicates disagreement
among engineers regarding the quality of a sample.
Labeling proved to be the most difficult and time-
consuming part of the project. The process is inherently

4322

500

Figure 3. spectrogram with 5 bands merges together

subjective, and audio quality is a continuous property —
there is no clear-cut boundary between good and bad. An-
other major challenge was dataset imbalance, as the factory
naturally produces far more good samples than defective
ones. To address this, I invested significant effort in curating
a dataset of 1000 samples with an approximately balanced
50-50 distribution between OK and NG labels, resulting in
a relatively reliable and fair training set.

We also collected a set of 8,000 unlabeled samples, most of
them are suppose to belong to "OK”, which proved valuable
for self-supervised learning. Some of these samples origi-
nate from different types of speakers, providing additional
diversity to the dataset.

3.1. Data Preprocessing

One of the most important components of our pipeline

is the transformation of raw WAV audio files into spectro-
grams. This conversion allows us to leverage a wide range
of deep learning techniques from the computer vision do-
main to train our binary classification model effectively.
To convert raw audio into spectrograms, we apply a Mel-
scale transformation that closely aligns with human audi-
tory perception. Specifically, we divide the frequency range
into four bands with varying Mel filter bank resolutions:

* 0-250 Hz: 4 filter banks

250-6000 Hz: 130 Mel filter banks
6000-16000 Hz: 85 Mel filter banks
16000-48000 Hz: 5 filter banks

This filter configuration places higher resolution in per-
ceptually important frequency ranges, allowing us to pre-
serve more detailed information where human hearing is
most sensitive.

4. Methods
4.1. Supervised Learning

The first version of the model was trained on a dataset
consisting of 200 **OK** samples and 100 **NG** sam-
ples. To address the class imbalance, the **NG** samples

Figure 4. the speakers we using to generate training data

were oversampled to create a balanced training set. The
model architecture consisted of two convolutional layers,
each followed by max pooling, and a series of fully con-
nected layers, culminating in a softmax output over two
classes. This baseline model achieved an initial accuracy
of 94.29%.

4.2, Data Augmentation

To further improve performance, I expanded the dataset
by collecting and carefully labeling additional samples to
maintain class balance.

T also implemented three types of audio data augmentation:

* Volume scaling: Adjusting amplitude using 4 filter
banks.

Background noise addition: Using 7 real background
noise recordings collected from the factory production
line.

Random trimming: This is particularly tricky, as the
original audio clips are only one second long. I al-
lowed a maximum trim fraction of 0.05 at the begin-
ning and end of each clip—longer trimming risks re-
moving essential information.

Other commonly used audio augmentation techniques, such
as time stretching, frequency shifting, or spectral distortion,
were deliberately avoided. Since the goal of this model is to
analyze the healthiness of the frequency distribution, such
augmentations could fundamentally alter the spectral con-
tent and render the augmented samples unreliable.

4.3. Self-supervised Learning

Next, I experimented with open-source pretrained mod-
els such as EfficientNetV2 and ResNetl18. I fine-tuned

4323

Figure 5. spectrogram from OK sample

Figure 6. Spectrogram from NG sample

Figure 7. Spectrogram from OK sample with background noise

these models using both the original and augmented ver-
sions of my dataset. However, the classification accuracy
remained around 94 %, and in some cases, particularly with
data augmentation, the accuracy dropped to approximately
80%.

As a last resort, I collected a large amount of unla-
beled data to expand the dataset as much as possible. This
included samples from different types of speakers to in-
crease diversity. Rather than relying on general-purpose
pretrained models, I trained a custom upstream model us-

ing self-supervised learning.

In this approach, I divided each spectrogram image into
a 10 x 5 grid. Then I randomly masked 10%, 20%, or
30% of the grid cells and trained the model to reconstruct
the original spectrogram. The loss function was defined as
the pixel-wise difference between the original and recon-
structed spectrogram images.

D

c=114

Se,ij — Seij (N

>

1j=1

1
L) = ——
U= 3w

L1 loss are used because spectrograms often have
smooth regions with sparse high-energy components (like
curves+). L1 loss preserves sharp edges and fine structures
better than MSE. MSE would tend to blur those clear lines,
which I don’t want.

This self-supervised pretraining strategy encouraged the
model to learn spectrogram-specific patterns relevant to
our task, resulting in a more specialized and effective fea-
ture extractor.

5. Experiments

The development of a robust model for speaker defect
detection was a gradual, iterative process. I began by train-
ing a simple convolutional neural network (CNN) on a
small dataset of 200 OK and 100 NG samples. To address
class imbalance, I oversampled the NG class. This base-
line model, composed of two convolutional layers followed
by max pooling and fully connected layers with a softmax
output, achieved a promising accuracy of 94.27%.

Motivated by this result, I fine-tuned a pretrained
ResNet18 on a larger, balanced dataset of 500 OK and
500 NG samples. However, the accuracy slightly decreased
to 93.07%, indicating that off-the-shelf pretrained features
may not be well-aligned with the domain-specific patterns
in spectrograms.

I then experimented with EfficientNetV2, fine-tuning
it on a heavily augmented dataset comprising 2500 aug-
mented samples per class. Unfortunately, the accuracy
dropped sharply to 80.5%, suggesting that aggressive aug-
mentation distorted the frequency structure critical for clas-
sification.

5.1. Lower False Positive

Realizing that further training epochs led to overfitting
and that the accuracy plateaued around 94%, I suspected
that the bottleneck was no longer architectural, but rather
inherent to the quality of the training data. I began to be-
lieve that my dataset contained latent inconsistencies and
ambiguous labeling that limited model performance.

To address this, I thoroughly revisited the dataset. I re-
classified any samples in the OK group that exhibited even
subtle signs of defects—such as short, faint glitches that are

4324

easy for humans to overlook—into the NG group. Addi-
tionally, I re-labeled all samples previously marked as “not
sure” into the NG category. This effectively imposed a
much stricter definition of quality and introduced a more
conservative, clearly defined boundary between OK and NG
classes. As a result, the labeling standard became both vi-
sually sharper and more consistent across the dataset.

Using this refined labeling strategy, I manually con-
structed a new dataset consisting of 450 OK and 750 NG
samples. Training a CNN on this improved dataset led to
a notable boost in performance, achieving an accuracy of
95.23%. Remarkably, this stricter definition of NG also
completely eliminated false positives in the test set.

To further improve performance, I designed a self-
supervised learning strategy. I collected a large corpus of
unlabeled data, including recordings from various speaker
types. Each spectrogram was divided into a 10 x 5 grid,
and 10%, 20%, or 30% of the grid patches were randomly
masked. A model was then trained to reconstruct the miss-
ing regions using a pixel-wise L1 loss. This self-supervised
model was subsequently fine-tuned on the labeled data,
yielding the highest accuracy of 96.67%. This step succes-
fully that self-supervised learning outperform generalized
pretrained model.

This step-by-step progression demonstrated that model
success was not solely determined by architecture complex-
ity, but by data quality, domain alignment, and the ability to
learn meaningful spectrogram-specific representations.

5.2. Failure Case Analysis

During model evaluation, we identified a class of fail-
ure cases in which the model consistently misclassified bor-
derline samples—such as the spectrogram shown in Fig-
ure8 as OK, despite subtle but real signs of acoustic de-
fects. These spectrograms typically exhibit a near-normal
harmonic structure but contain faint distortions, short-lived
dropout bands, or slightly irregular harmonics that are eas-
ily overlooked by human annotators.

Initially, these samples were labeled as OK due to their
overall visual similarity to clean signals. However, upon
closer inspection and repeated listening, we recognized that
such signals are indicative of mild speaker anomalies, such
as intermittent leakage or high-frequency instability. To ad-
dress this ambiguity, we reclassified these edge cases from
OK to NG and also reassigned all "not sure” samples to the
NG category, thereby enforcing a stricter and more conser-
vative labeling standard.

In the specific case shown in Figure8, after convert-
ing the waveform into a spectrogram, we observed a pro-
nounced spread of magnitude in the first few milliseconds.
This spread, concentrated in the low-frequency region, is
difficult to detect by ear due to its subtlety and short dura-
tion. However, after consulting with an experienced audio

Spectrogram

1000

Frequency
o
3
3

8
8

o

0 100 200

300

400
Time

Figure 8. An sample that used to have OK label and then changed
to NG

engineer, we determined that this behavior is indeed symp-
tomatic of a defect and should be labeled as NG under our
revised criteria.

This stricter labeling strategy led to more consistent
training signals and improved the model’s overall accuracy
and robustness. In particular, it eliminated false positives
entirely in the final CNN model trained on the relabeled
dataset.

5.3. Generalization and Limitations

To evaluate the generalizability of our model, we con-
ducted tests on audio data from two additional speaker types
not present in the final supervised training set, one tiny size
speaker and another type of mid-speaker. The model main-
tained high accuracy on both 87%, demonstrating a poten-
tial good transferability across speaker hardware variants.
This suggests that the spectrogram-based features learned
by the network might be robust to changes in speaker re-
sponse characteristics. In the future, a one-to-all model to
test different kinds of speaker might be possible.

However, the model was found to be somewhat sensi-
tive to background noise conditions. In particular, factory
recordings with excessive ambient machinery noise or over-
lapping human voices occasionally caused classification in-
stability. This indicates a limitation in the diversity of en-
vironmental conditions represented in the training data. Al-
though data augmentation with backgournd noise is tried,
its shows more harmfulness than usefulness in our cases.

5.4. Result Table
e Model 1
— Model: CNN

— Training set: 200 OK + 100 NG
— Accuracy: 94.27%

4325

— False Positive: 6.67%(1/15)
Model 2

Model: ResNet18 + warmup + fine-tune
Training set: 500 OK + 500NG
Accuracy: 93.07%

False Positive: 10.67%(8/75)

Model 3

Model: EfficientNetV2 + warmup + fine-tune

Training set: 500 OK+ 2500 OK(Augmented) +
S00NG + 2500 NG(Augmented)

Accuracy: 80.5%
False Positive: 22.00%(99/450)

Model 4

Model: EfficientNetV2 + warmup + fine-tune
Training set: 450 OK+ 750NG

Accuracy: 95.23%

False Positive: 0%(0/112)

Model 5

Model: Self-supervised Vision Pretraining with
Local Masked Reconstruction + CNN

Training set: 1. self-supervised phase: 5000
unlabeled data; 2.Supervised phase: 450 OK+
750NG

Accuracy: 96.43%
False Positive: 0%(0/112)

6. Implementation

I have successfully integrated my model into Sound-
check, which supports real-time audio input directly from
a microphone. The complete pipeline is as follows:

Speaker arrives — Microphone captures audio
— Convert to spectrogram — Binary classifi-
cation (with minimized false positives) —

o If classified as OK: proceed to the next pro-
duction step

» If classified as NG: the sample is flagged for
human double-check

Since the model is designed to minimize false positives,
it tends to be conservative and may occasionally overkill—
classifying borderline OK samples as NG. Therefore, a
manual review is still required for NG outputs. However,
given that NG cases are naturally rare in the production line,
this approach still significantly reduces inspection time.

Unlike many embedded machine learning deployments,
we did not face major constraints regarding quantization,
latency, or model size. The factory does not require us to
deploy the model on low-power devices such as Raspberry
Pi. Instead, our “embedded” environment is a laptop, which
is compact enough for mobile production lines and power-
ful enough for real-time processing. On a local laptop, the
model runs consistently and completes inference in under
1 second. This setup demonstrates that our goals of time-
saving and efficiency improvement are practically achiev-
able.

I will demonstrate the entire pipeline—from sound input
to real-time decision output—during my poster session.

Looking ahead, I plan to collaborate further with the fac-
tory this summer to explore the possibility of real-time cal-
ibration in the actual production environment and evaluate
whether our target efficiency gains can be fully realized.

Conclusion

In this project, I developed and deployed a machine
learning system for detecting speaker defects through spec-
trogram analysis. Starting with a simple CNN model and
a small, imbalanced dataset, I gradually improved perfor-
mance through systematic iterations in data collection, la-
beling quality, model architecture, and training methodol-
ogy. Along the way, I identified the limitations of generic
pretrained models and data augmentation techniques, and
ultimately adopted a self-supervised learning approach that
enabled the model to learn spectrogram-specific features
more effectively.

Careful relabeling and stricter quality standards further
enhanced model consistency, leading to an accuracy of
95.23% with zero false positives in the final CNN model.
The entire system was successfully integrated into a real-
time production pipeline using Soundcheck, enabling fast,
reliable classification with inference time under one second

4326

on a local laptop.

This pipeline demonstrates the feasibility of applying
deep learning in industrial audio quality inspection. Look-
ing ahead, I plan to continue collaborating with the factory
to validate this system in actual production settings and ex-
plore real-time calibration strategies to achieve measurable
cost and time savings.

References

¢ Defard, Thomas et al. ”PaDiM: A Patch Distribution Mod-
eling Framework for Anomaly Detection and Localization.”
arXiv preprint arXiv:2011.08785, 2021.

Tan, Mingxing and Le, Quoc V. ”EfficientNetV2:
Smaller Models and Faster Training.” arXiv preprint
arXiv:2104.00298, 2021.

Chen, Jun et al. ”Efficient Self-supervised Vision Pre-
training with Local Masked Reconstruction.” arXiv preprint
arXiv:2206.00790, 2025.

